Files
medevio/10ReadPozadavky/01 Read pozadavky.py
2025-11-02 22:31:55 +01:00

203 lines
5.9 KiB
Python

#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Fetch Medevio pending (ACTIVE) patient requests and return a pandas DataFrame.
Reads Bearer token from token.txt (single line, token only).
"""
import requests
import pandas as pd
import time
from typing import List, Dict, Any
# CONFIG ---------------------------------------------------------------------
TOKEN_FILE = "token.txt" # file with token (no "Bearer " prefix)
GRAPHQL_URL = "https://app.medevio.cz/graphql"
CLINIC_SLUG = "mudr-buzalkova" # adjust if needed
LOCALE = "cs"
PAGE_SIZE = 50 # how many items to request per page
REQUEST_WAIT = 0.2 # seconds between requests to be polite
# ---------------------------------------------------------------------------
GRAPHQL_QUERY = r"""
query ClinicLegacyRequestList_ListPatientRequestsForClinic(
$clinicSlug: String!,
$queueId: String,
$queueAssignment: QueueAssignmentFilter!,
$state: PatientRequestState,
$pageInfo: PageInfo!,
$locale: Locale!
) {
requests: listPatientRequestsForClinic(
clinicSlug: $clinicSlug,
queueId: $queueId,
queueAssignment: $queueAssignment,
state: $state,
pageInfo: $pageInfo
) {
id
createdAt
dueDate
displayTitle(locale: $locale)
doneAt
removedAt
priority
evaluationResult(locale: $locale) {
fields {
name
value
}
}
clinicId
extendedPatient {
id
identificationNumber
kind
name
note
owner { name surname }
key
status
surname
type
user { id name surname }
isUnknownPatient
}
lastMessage {
createdAt
id
readAt
sender { id name surname clinicId }
text
}
queue { id name }
reservations { id canceledAt done start }
tags(onlyImportant: true) { id name color icon }
priceWhenCreated
currencyWhenCreated
}
}
"""
def read_token(path: str) -> str:
with open(path, "r", encoding="utf-8") as f:
t = f.read().strip()
if t.startswith("Bearer "):
t = t.split(" ", 1)[1]
return t
def fetch_requests(token: str,
clinic_slug: str = CLINIC_SLUG,
locale: str = LOCALE,
page_size: int = PAGE_SIZE) -> List[Dict[str, Any]]:
headers = {
"Authorization": f"Bearer {token}",
"Content-Type": "application/json",
"Accept": "application/json",
}
all_items: List[Dict[str, Any]] = []
offset = 0
while True:
variables = {
"clinicSlug": clinic_slug,
"queueId": None,
"queueAssignment": "ANY",
"state": "ACTIVE",
"pageInfo": {"first": page_size, "offset": offset},
"locale": locale,
}
payload = {"query": GRAPHQL_QUERY, "variables": variables, "operationName": "ClinicLegacyRequestList_ListPatientRequestsForClinic"}
r = requests.post(GRAPHQL_URL, json=payload, headers=headers, timeout=30)
r.raise_for_status()
js = r.json()
# Basic error handling
if "errors" in js:
raise RuntimeError(f"GraphQL returned errors: {js['errors']}")
items = js.get("data", {}).get("requests", [])
if not items:
break
all_items.extend(items)
# If fewer than requested, we are at the end
if len(items) < page_size:
break
offset += page_size
time.sleep(REQUEST_WAIT)
return all_items
def flatten_item(item: Dict[str, Any]) -> Dict[str, Any]:
patient = item.get("extendedPatient") or {}
last_msg = item.get("lastMessage") or {}
queue = item.get("queue") or {}
# evaluationResult fields -> map of name:value (if exists)
eval_map = {}
eval_block = item.get("evaluationResult") or {}
for fld in (eval_block.get("fields") or []):
name = fld.get("name")
value = fld.get("value")
if name:
eval_map[name] = value
flat = {
"id": item.get("id"),
"createdAt": item.get("createdAt"),
"dueDate": item.get("dueDate"),
"displayTitle": item.get("displayTitle"),
"doneAt": item.get("doneAt"),
"removedAt": item.get("removedAt"),
"priority": item.get("priority"),
"clinicId": item.get("clinicId"),
"patient_id": patient.get("id"),
"patient_identificationNumber": patient.get("identificationNumber"),
"patient_name": patient.get("name"),
"patient_surname": patient.get("surname"),
"patient_status": patient.get("status"),
"lastMessage_id": last_msg.get("id"),
"lastMessage_createdAt": last_msg.get("createdAt"),
"lastMessage_text": last_msg.get("text"),
"queue_id": queue.get("id"),
"queue_name": queue.get("name"),
"priceWhenCreated": item.get("priceWhenCreated"),
"currencyWhenCreated": item.get("currencyWhenCreated"),
}
# merge evaluation fields (if any) prefixed by "eval_"
for k, v in eval_map.items():
flat[f"eval_{k}"] = v
return flat
def to_dataframe(items: List[Dict[str, Any]]) -> pd.DataFrame:
rows = [flatten_item(it) for it in items]
df = pd.DataFrame(rows)
# try parsing dates
for col in ("createdAt", "dueDate", "doneAt", "lastMessage_createdAt", "removedAt"):
if col in df.columns:
df[col] = pd.to_datetime(df[col], errors="coerce")
return df
def main():
token = read_token(TOKEN_FILE)
print("Fetching pending (ACTIVE) requests from Medevio...")
items = fetch_requests(token)
print(f"Fetched {len(items)} items.")
df = to_dataframe(items)
pd.set_option("display.max_rows", 20)
pd.set_option("display.max_colwidth", 160)
print(df.head(50))
# optionally save
df.to_excel("medevio_pending_requests.xlsx", index=False)
print("Saved medevio_pending_requests.xlsx")
if __name__ == "__main__":
main()